Neuro Dynamic Programming

Author: Dimitri P. Bertsekas
Publisher:
ISBN: 9781886529106
Size: 65.33 MB
Format: PDF, ePub, Mobi
View: 7174
Download Read Online
This book provides the first systematic presentation of the science and the art behind this promising methodology.

Neural Information Processing

Author: Akira Hirose
Publisher: Springer
ISBN: 3319466879
Size: 25.66 MB
Format: PDF, ePub
View: 533
Download Read Online
Reinforcement Learning and Approximate Dynamic Programming for Feedback
Control, pp. 535–559. Wiley, New York (2011) 11. Bertsekas, D.P.: Dynamic
Programming and Optimal Control, vol. 1, no. 2. Athena Scientific, Belmont (1995
) 12. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley-Intersicence, New York (2005) 13. Bertsekas, D.P., Tsitsiklis,
J.N.: Neuro-Dynamic Programming (Optimization and Neural Computation Series
, 3).

Analytical Methods For Dynamic Modelers

Author: Hazhir Rahmandad
Publisher: MIT Press
ISBN: 0262029499
Size: 11.76 MB
Format: PDF, Mobi
View: 3684
Download Read Online
... the two optimum policies that emerge. 8. Because feature C1 for player 1 is like
C2 for player 2, the element [1,1] of B19* (=26.7) corresponds to the element [3,3]
of B29* ... Bertsekas, D. P. 2007. Dynamic programming and optimal control, 3rd
ed. 2 vols. Optimization and computation series 1. Belmont, MA: Athena Scientific
. Bertsekas, D. P., and J. N. Tsitsiklis. 1996. Neuro-dynamic programming.
Optimization and neural computation series 3. Belmont, MA: Athena Scientific.
Dockner ...

Adaptivity And Learning

Author: Reimer Kühn
Publisher: Springer Science & Business Media
ISBN: 3662055945
Size: 65.65 MB
Format: PDF, Mobi
View: 7470
Download Read Online
4. Bertsekas, D. P. and Tsitsiklis, J. N. (1989) Neuro Dynamic Programming.
Athena Scientific, Belmont, Massachusetts. 5. Bertsekas, D. P. and Tsitsiklis, J. N.
(1996) Neuro Dynamic Programming. Athena Scientific, Belmont, Massachusetts.
6. Bertsekas, D. P. and Tsitsiklis, J. N. (1996) Neuro-dynamic programming.
Optimization and neural computation series, 3. Athena Scientific. 7. Claus, C. and
Boutilier, C. (1999) The Dynamics of Reinforcement Learning in Cooperative
Multiagent ...

Robocup 2001 Robot Soccer World Cup V

Author: Andreas Birk
Publisher: Springer Science & Business Media
ISBN: 3540439129
Size: 58.42 MB
Format: PDF, ePub, Mobi
View: 7415
Download Read Online
Neuro-dynamic programming. Optimization and neural computation series ; 3.
Athena Scientific, 1996. [2] Caroline Claus and Craig Boutilier. The Dynamics of
Reinforcement Learning in Cooperative Multiagent Systems. In IJCAI, 1999. [3]
Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer,
1997. [4] M. Lauer and M. Riedmiller. An algorithm for distributed reinforcement
learning in cooperative multi-agent systems. In Proceedings of International
Conference ...

Machine Learning And Knowledge Discovery In Databases

Author: Toon Calders
Publisher: Springer
ISBN: 3662448513
Size: 40.22 MB
Format: PDF, Docs
View: 517
Download Read Online
22. 23. 24. 25. 3. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming.
Optimization and Neural Computation Series 3, vol. 7. Athena Scientific (1996) 4.
Bradtke, S., Barto, A.: Linear least-squares algorithms for temporal difference
learning. Machine Learning 22, 33–57 (1996) 5. Dani, V., Hayes, T.P., Kakade,
S.M.: Stochastic linear optimization under bandit feedback. In: COLT, pp. 355–
366 (2008) 6. Fathi, M., Frikha, N.: Transport-entropy inequalities and deviation
estimates ...

Micai 2008 Advances In Artificial Intelligence

Author: Alexander Gelbukh
Publisher: Springer
ISBN: 3540886362
Size: 46.71 MB
Format: PDF, Kindle
View: 6146
Download Read Online
Govindaraju, R.S.: Artificial Neural Networks in hydrology: II: hydrological
applications. Journal of Hydrology Engineering 5(2), 124–137 (2000) 9.
Sugawara, M., Watanabe, I., Ozaki, E., Katsuyama, Y.: Tank model with snow
component. Research Notes, No. 65, National Research Center for Disaster
Prevention, Japan (1984) Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-dynamic
programming. Optimization and Neural Computation Series, vol. 3. Athena
Scientific (1996) Passino, K.M.: Home ...

Techniques For Adaptive Control

Author: Vance VanDoren
Publisher: Elsevier
ISBN: 0080542255
Size: 62.91 MB
Format: PDF
View: 4858
Download Read Online
U.S. Patent No. 6,112,126 (August 29). APPENDIX: TABLE OF ARTIFICIAL
INTELLIGENCE REFERENCE TEXTS Author(s) Title ISBN Subject” Martin.
Anthony, Neural Network Learning: Theoretical 052157353X NN Peter L. Bartlett
Foundations Wolfgang Banzhaf, Foundations of Genetic Algorithms 1558605592
GA Colin Reeves Dimitri P. Bersekas, Neuro-Dynamic Programming (Optimiza-
1886529108 NN John N. Tsitsiklis tion and Neural Computation Series, 3) Lance
Chambers ...

Artificial Life And Computational Intelligence

Author: Stephan Chalup
Publisher: Springer
ISBN: 3319148036
Size: 23.10 MB
Format: PDF, ePub, Mobi
View: 2726
Download Read Online
In: 3th Sound and Music Computing Conference, Marseille, France (2006)
Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Optimization and
Neural Computation Series. Athena Scientific, Belmont (1996) Bickerman, G.,
Bosley, S., Swire, P., Keller, R.: Learning to play ... Neural Networks 22(3), 213–
219 (2009) Doornbusch, P.: The music of CSIRAC: Australia's first computer
music. Common Ground Publishing, Altona (2005) Doya, K.: Metalearning,
neuromodulation and ...

Advances In Artificial Intelligence

Author: Ziad Kobti
Publisher: Springer Science & Business Media
ISBN: 3540726640
Size: 15.77 MB
Format: PDF, ePub
View: 2173
Download Read Online
In: UAI2002. (2002) 2. McCallum, A.: Overcoming incomplete perception with
utile distinction memory. In: ICML-93. (1993) 3. Bertsekas, D.P., Tsitsiklis, J.N.:
Neuro-Dynamic Programming. Optimization and neural computation series.
Athena Scientific, Belmont, MA (1996) 4. Lagoudakis, M.G., Parr, R.: Least-
squares policy iteration. Journal of Machine Learning Research 4(December) (
2003) 1107–1149 5. Mahadevan, S.: Proto-value functions: Developmental
reinforcement learning.